# Web Survey Bibliography

When there is unit (whole-element) nonresponse in a survey sample drawn using probability-sampling principles, a common practice is to divide the sample into mutually exclusive groups in such a way that it is reasonable to assume that each sampled element in a group were equally likely to be a survey nonrespondent. In this way, unit response can be treated as an additional phase of probability sampling with the inverse of the estimated probability of unit response within a group serving as an adjustment factor when computing the final weights for the group’s respondents. If the goal is to estimate the population mean of a survey variable that roughly behaves as if it were a random variable with a constant mean within each group regardless of the original design weights, then incorporating the design weights into the adjustment factors will usually be more efficient than not incorporating them. In fact, if the survey variable behaved exactly like such a random variable, then the estimated population mean computed with the design-weighted adjustment factors would be nearly unbiased in some sense (i.e., under the combination of the original probability-sampling mechanism and a prediction model) even when the sampled elements within a group are not equally likely to respond.

Journal Homepage (abstract) / (full text)

# Web survey bibliography (183)

- Using experts’ consensus (the Delphi method) to evaluate weighting techniques in web surveys not...; 2017; Toepoel, V.; Emerson, H.
- A Partially Successful Attempt to Integrate a Web-Recruited Cohort into an Address-Based Sample; 2017; Kott, P. S., Farrelly, M., Kamyab, K.
- Overview: Online Surveys; 2017; Vehovar, V.; Lozar Manfreda, K.
- Inferences from Internet Panel Studies and Comparisons with Probability Samples; 2016; Lachan, R.; Boyle, J.; Harding, R.
- Integration of a phone-based household travel survey and a web-based student travel survey; 2016; Verreault, H.; Morency, C.
- Estimation and Adjustment of Self-Selection Bias in Volunteer Panel Web Surveys ; 2016; Niu, Ch.
- Calculating Standard Errors for Nonprobability Samples when Matching to Probability Samples ; 2016; Lee, Ad.; ZuWallack, R. S.
- Establishing the accuracy of online panels for survey research; 2016; Bruggen, E.; van den Brakel, J.; Krosnick, J. A.
- Evaluating Three Approaches to Statistically Adjust for Mode Effects; 2016; Kolenikov, S.; Kennedy, C.
- Linearization Variance Estimators for Mixed ‒ mode Survey Data when Response Indicators are Modeled...; 2016; Demnati, A.
- Options for Fielding and Analyzing Web Surveys; 2016; Schonlau, M.; Couper, M. P.
- Report of the Inquiry into the 2015 British general election opinion polls; 2016; Sturgis, P., Baker, N., Callegaro, M., Fisher, St., Green, J., Jennings, W., Kuha, J., Lauderdale, B...
- Solving the Nonresponse Problem With Sample Matching?; 2016
- Online and Social Media Data As an Imperfect Continuous Panel Survey; 2016; Diaz, F.; Garmon, F.; Hofman, J. K.; Kiciman, E.; Rothschild, D.
- Quota Controls in Survey Research.; 2016; Gittelman, S. H.; Thomas, R. K.; Lavrakas, P. J.; Lange, V.
- Scientific Surveys Based on Incomplete Sampling Frames and High Rates of Nonresponse; 2016; Fahimi, M.; Barlas, F. M.; Thomas, R. K.; Buttermore, N. R.
- Doing Surveys Online ; 2016; Toepoel, V.
- Using Mobile Phones for High-Frequency Data Collection; 2015; Azevedo, J. P.; Ballivian, A.; Durbin, W.
- On Bias Adjustments for Web Surveys; 2015; Fan, L.; Lou, W.; Landsman, V.
- The quality of data collected using online panels: a decade of research ; 2015; Callegaro, M.
- Does the use of mobile devices (tablets and smartphones) affect survey quality and choice behaviour...; 2015; Liebe, U., Glenk, K., Oehlmann, M., Meyerhoff, J.
- Web-based survey, calibration, and economic impact assessment of spending in nature based recreation; 2015; Paudel, K. P., Devkota, N., Gyawali, B.
- Using Web Panels for Official Statistics; 2014; Bethlehem, J.
- Self-reported cheating in web surveys on political knowledge; 2014; Jensen, C., Thomsen, J. P. F.
- Keeping Surveys Valid, Reliable, and Useful: A Tutorial; 2014; Greenberg, M. R., Weiner, M. D.
- Prioritisation of alternatives with analytical hierarchy process plus response latency and web survey...; 2014; Barone, S. Errore, A., Lombardo, A.
- A critical review of studies investigating the quality of data obtained with online panels based on...; 2014; Callegaro, M., Villar, A., Yeager, D. S., Krosnick, J. A.
- Online panel research: History, concepts, applications and a look at the future; 2014; Callegaro, M., Baker, R., Bethlehem, J., Goeritz, A., Krosnick, J. A., Lavrakas, P. J.
- Using Paradata to Predict and to Correct for Panel Attrition in a Web-based Panel Survey; 2014; Rossmann, J., Gummer, T.
- Improving cheater detection in web-based randomized response using client-side paradata; 2014; Dombrowski, K., Becker, C.
- Modelling ”don’t know” responses in rating scales; 2014; Manisera, M., Zuccolotto, P.
- User Modeling via Machine Learning and Rule-Based Reasoning to Understand and Predict Errors in Survey...; 2013; Stuart, L. C.
- Comparison of Three Modes for a Crime Victimization Survey; 2013; Laaksonen, S., Heiskanen, M.
- The Short-term Campaign Panel of the German Longitudinal Election Study 2009. Design, Implementation...; 2013; Steinbrecher, M., Rossmann, J.
- Too Fast, Too Straight, Too Weird: Post Hoc Identification of Meaningless Data in Internet ; 2013; Leiner, D. J.
- Assessing Nonresponse Bias in the Green Technologies and Practices Survey; 2013; Meekins, B., Sverchkov, M., Stang, S.
- Web Panel Representativeness; 2013; Bianchi, A., Biffignandi, S.
- On the Impact of Response Patterns on Survey Estimates from Access Panels; 2013; Enderle, T., Muennich, R., Bruch, C.
- Unit Nonresponse and Weighting Adjustments: A Critical Review; 2013; Brick, J. M.
- Adjusting for bias in a mixed-mode CAWI survey on University students ; 2013; Clerici, R., Giraldo, A.
- A probability-based web panel for the UK: What could it look like?; 2013; Nicolaas, G.
- Panel Attrition: Separating Stayers, Sleepers and Other Types of Drop-Out in an Internet Panel; 2013; Lugtig, P. J.
- Speeding and Non-Differentiation in Web Surveys: Evidence of Correlation and Strategies for Reduction...; 2013; Zhang, Che.
- Web Versus Outbound: A Mode Face-Off Following the Presidential Debate; 2013; Marlar, J.
- The Effects of Errors in Paradata on Weighting Class Adjustments: A Simulation Study; 2013; West, B. T.
- Practical tools for designing and weighting survey samples; 2013; Valliant, R. L., Daver, J. A., Kreuter, F.
- Moving an established survey online – or not?; 2013; Barber, T., Chilvers, D., Kaul, S.
- Measuring working conditions in a volunteer web survey; 2013; de Pedraza, P., Villacampa, A.
- Propensity Score Weighting – Can Personality Adjust for Selectivity?; 2013; Glantz, A., Greszki, R.
- Eurobarometer Special surveys: Special Eurobarometer 381; 2012