Notice: the WebSM website has not been updated since the beginning of 2018.

Web Survey Bibliography

Title Use of a Google Map Tool Embedded in an Internet Survey Instrument: Is it a Valid and Reliable Alternative to Geocoded Address Data?
Source JMIR Publications, 3, 2: e24
Year 2014
Access date 25.09.2014
Full text

PDF (1,12 mb)


Background: Men who have sex with men (MSM) in the United States are at high risk for human immunodeficiency virus (HIV) and poor HIV related outcomes. Maps can be used to identify, quantify, and address gaps in access to HIV care among HIV-positive MSM, and tailor intervention programs based on the needs of patients being served.
Objective: The objective of our study was to assess the usability of a Google map question embedded in a Web-based survey among Atlanta-based, HIV-positive MSM, and determine whether it is a valid and reliable alternative to collection of address-based data on residence and last HIV care provider.
Methods: Atlanta-based HIV-positive MSM were recruited through Facebook and from two ongoing studies recruiting primarily through venue-based sampling or peer referral (VBPR). Participants were asked to identify the locations of their residence and last attended HIV care provider using two methods: (1) by entering the street address (gold standard), and (2) “clicking” on the locations using an embedded Google map. Home and provider addresses were geocoded, mapped, and compared with home and provider locations from clicked map points to assess validity. Provider location error values were plotted against home location error values, and a kappa statistic was computed to assess agreement in degree of error in identifying residential location versus provider location.
Results: The median home location error across all participants was 0.65 miles (interquartile range, IQR, 0.10, 2.5 miles), and was lower among Facebook participants (P<.001), whites (P<.001), and those reporting higher annual household income (P=.04). Median home location error was lower, although not statistically significantly, among older men (P=.08) and those with higher educational attainment (P=.05). The median provider location error was 0.32 miles (IQR, 0.12, 1.2 miles), and did not vary significantly by age, recruitment method, race, income, or level of educational attainment. Overall, the kappa was 0.20, indicating poor agreement between the two error measures. However, those recruited through Facebook had a greater level of agreement (κ=0.30) than those recruited through VBPR methods (κ=0.16), demonstrating a greater level of consistency in using the map question to identify home and provider locations for Facebook-recruited individuals.
Conclusions: Most participants were able to click within 1 mile of their home address and their provider’s office, and were not always able to identify the locations on a map consistently, although some differences were observed across recruitment methods. This map tool may serve as the basis of a valid and reliable tool to identify residence and HIV provider location in the absence of geocoded address data. Further work is needed to improve and compare map tool usability with the results from this study.

Access/Direct link

JMIR Homepage (Abstract) & (Full text)

Year of publication2014
Bibliographic typeJournal article