# Web Survey Bibliography

Web surveys are usually characterized by massive non response and undercoverage. A popular way to deal with these problem in the sampling literature is by means of weighting observations in the estimation process. If the population totals of some auxiliary variables are accurately known poststratification or, more in general, calibration methods can be used to reduce both non-response and undercoverage bias (Sarndal and Lundstrom, 2oo5). They are based on the correction of a set of ‘basic weights’, i.e. the inverse of the inclusion probabilities when sampling is random. Alternatively an estimated propensity score is sometimes used to create a weight adjustment to account for nonresponse in surveys where some variables are known for both respondents and nonrespondents (Little and Rubin, 1987).

When correction of basic weights is substantial the resulting weights may be characterized by high variability and a skewed distribution with extreme values. This may have a bad impact of the mean square error of estimators. In fact the reduction in the bias may be overcome by an increase in the variance. This is true especially when non response is noninformative, that is the probability of being a respondent is independent of the study variables.

Compromise solutions may be obtained by means of weight trimming or smoothing (Elliot and Little, 2000). In the case of calibration we may also modify the distance function for the same purposes.

In this paper we deal with several problems related to weighting, such as variable selection in building propensity scores and calibration, comparison of different trimming threshold and smoothing methods. We are also interested in evaluating the impact of ‘basic’ or ‘initial’ weights on final weights. This problem is relevant for those web surveys in which it is not possible to obtain basic weights as inverse inclusion probabilities. We illustrate these problems using data from a web survey conducted on a population of university students. More detail we consider a survey on a stratified random sample of students from the University of Bergamo, contacted via e-mail and asked to complete a customer satisfaction questionnaire on the University library services on the internet.

Workshop Homepage (presentation)

# Web survey bibliography (183)

- Using experts’ consensus (the Delphi method) to evaluate weighting techniques in web surveys not...; 2017; Toepoel, V.; Emerson, H.
- A Partially Successful Attempt to Integrate a Web-Recruited Cohort into an Address-Based Sample; 2017; Kott, P. S., Farrelly, M., Kamyab, K.
- Overview: Online Surveys; 2017; Vehovar, V.; Lozar Manfreda, K.
- Inferences from Internet Panel Studies and Comparisons with Probability Samples; 2016; Lachan, R.; Boyle, J.; Harding, R.
- Integration of a phone-based household travel survey and a web-based student travel survey; 2016; Verreault, H.; Morency, C.
- Estimation and Adjustment of Self-Selection Bias in Volunteer Panel Web Surveys ; 2016; Niu, Ch.
- Calculating Standard Errors for Nonprobability Samples when Matching to Probability Samples ; 2016; Lee, Ad.; ZuWallack, R. S.
- Establishing the accuracy of online panels for survey research; 2016; Bruggen, E.; van den Brakel, J.; Krosnick, J. A.
- Evaluating Three Approaches to Statistically Adjust for Mode Effects; 2016; Kolenikov, S.; Kennedy, C.
- Linearization Variance Estimators for Mixed ‒ mode Survey Data when Response Indicators are Modeled...; 2016; Demnati, A.
- Options for Fielding and Analyzing Web Surveys; 2016; Schonlau, M.; Couper, M. P.
- Report of the Inquiry into the 2015 British general election opinion polls; 2016; Sturgis, P., Baker, N., Callegaro, M., Fisher, St., Green, J., Jennings, W., Kuha, J., Lauderdale, B...
- Solving the Nonresponse Problem With Sample Matching?; 2016
- Online and Social Media Data As an Imperfect Continuous Panel Survey; 2016; Diaz, F.; Garmon, F.; Hofman, J. K.; Kiciman, E.; Rothschild, D.
- Quota Controls in Survey Research.; 2016; Gittelman, S. H.; Thomas, R. K.; Lavrakas, P. J.; Lange, V.
- Scientific Surveys Based on Incomplete Sampling Frames and High Rates of Nonresponse; 2016; Fahimi, M.; Barlas, F. M.; Thomas, R. K.; Buttermore, N. R.
- Doing Surveys Online ; 2016; Toepoel, V.
- Using Mobile Phones for High-Frequency Data Collection; 2015; Azevedo, J. P.; Ballivian, A.; Durbin, W.
- On Bias Adjustments for Web Surveys; 2015; Fan, L.; Lou, W.; Landsman, V.
- The quality of data collected using online panels: a decade of research ; 2015; Callegaro, M.
- Does the use of mobile devices (tablets and smartphones) affect survey quality and choice behaviour...; 2015; Liebe, U., Glenk, K., Oehlmann, M., Meyerhoff, J.
- Web-based survey, calibration, and economic impact assessment of spending in nature based recreation; 2015; Paudel, K. P., Devkota, N., Gyawali, B.
- Using Web Panels for Official Statistics; 2014; Bethlehem, J.
- Self-reported cheating in web surveys on political knowledge; 2014; Jensen, C., Thomsen, J. P. F.
- Keeping Surveys Valid, Reliable, and Useful: A Tutorial; 2014; Greenberg, M. R., Weiner, M. D.
- Prioritisation of alternatives with analytical hierarchy process plus response latency and web survey...; 2014; Barone, S. Errore, A., Lombardo, A.
- A critical review of studies investigating the quality of data obtained with online panels based on...; 2014; Callegaro, M., Villar, A., Yeager, D. S., Krosnick, J. A.
- Online panel research: History, concepts, applications and a look at the future; 2014; Callegaro, M., Baker, R., Bethlehem, J., Goeritz, A., Krosnick, J. A., Lavrakas, P. J.
- Using Paradata to Predict and to Correct for Panel Attrition in a Web-based Panel Survey; 2014; Rossmann, J., Gummer, T.
- Improving cheater detection in web-based randomized response using client-side paradata; 2014; Dombrowski, K., Becker, C.
- Modelling ”don’t know” responses in rating scales; 2014; Manisera, M., Zuccolotto, P.
- User Modeling via Machine Learning and Rule-Based Reasoning to Understand and Predict Errors in Survey...; 2013; Stuart, L. C.
- Comparison of Three Modes for a Crime Victimization Survey; 2013; Laaksonen, S., Heiskanen, M.
- The Short-term Campaign Panel of the German Longitudinal Election Study 2009. Design, Implementation...; 2013; Steinbrecher, M., Rossmann, J.
- Too Fast, Too Straight, Too Weird: Post Hoc Identification of Meaningless Data in Internet ; 2013; Leiner, D. J.
- Assessing Nonresponse Bias in the Green Technologies and Practices Survey; 2013; Meekins, B., Sverchkov, M., Stang, S.
- Web Panel Representativeness; 2013; Bianchi, A., Biffignandi, S.
- On the Impact of Response Patterns on Survey Estimates from Access Panels; 2013; Enderle, T., Muennich, R., Bruch, C.
- Unit Nonresponse and Weighting Adjustments: A Critical Review; 2013; Brick, J. M.
- Adjusting for bias in a mixed-mode CAWI survey on University students ; 2013; Clerici, R., Giraldo, A.
- A probability-based web panel for the UK: What could it look like?; 2013; Nicolaas, G.
- Panel Attrition: Separating Stayers, Sleepers and Other Types of Drop-Out in an Internet Panel; 2013; Lugtig, P. J.
- Speeding and Non-Differentiation in Web Surveys: Evidence of Correlation and Strategies for Reduction...; 2013; Zhang, Che.
- Web Versus Outbound: A Mode Face-Off Following the Presidential Debate; 2013; Marlar, J.
- The Effects of Errors in Paradata on Weighting Class Adjustments: A Simulation Study; 2013; West, B. T.
- Practical tools for designing and weighting survey samples; 2013; Valliant, R. L., Daver, J. A., Kreuter, F.
- Moving an established survey online – or not?; 2013; Barber, T., Chilvers, D., Kaul, S.
- Measuring working conditions in a volunteer web survey; 2013; de Pedraza, P., Villacampa, A.
- Propensity Score Weighting – Can Personality Adjust for Selectivity?; 2013; Glantz, A., Greszki, R.
- Eurobarometer Special surveys: Special Eurobarometer 381; 2012