Web Survey Bibliography
Title Predictive inference for non-probability samples: a simulation study
Author Buelens, B.; Burger, J.; van den Brakel, J.
Source Statistics Netherlands (2015)
Year 2016
Access date 07.02.2016
Full text pdf (2.3 MB)
Abstract Non-probability samples provide a challenging source of information for official statistics, because the data generating mechanism is unknown. Making inference from such samples therefore requires a novel approach compared with the classic approach of survey sampling. Design-based inference is a powerful technique for random samples obtained via a known survey design, but cannot legitimately be applied to non-probability samples such as big data and voluntary opt-in panels. We propose a framework for such non-probability samples based on predictive inference. Three classes of methods are discussed. Pseudo-design-based methods are the simplest and apply traditional design-based estimation despite the absence of a survey design; model-based methods specify an explicit model and use that for prediction; algorithmic methods from the field of machine learning produce predictions in a non-linear fashion through computational techniques. We conduct a simulation study with a real-world data set containing annual mileages driven by cars for which a number of auxiliary characteristics are known. A number of data generating mechanisms are simulated, and—in absence of a survey design—a range of methods for inference are applied and compared to the known population values.The first main conclusion from the simulation study is that unbiased inference from a selective non-probability sample is possible, but access to the variables explaining the selection mechanism underlying the data generating process is crucial. Second, exclusively relying on familiar pseudo-design-based methods is often too limited. Model-based and algorithmic methods of inference are more powerful in situations where data are highly selective. Thus, when considering the use of big data or other non-probability samples for official statistics, the statistician must attempt to obtain auxiliary variables or features that could explain the data generating mechanism, and in addition must consider the use of a wider variety of methods for predictive inference than those in typical use at statistical agencies today.
Access/Direct link Statistics Netherlands (Abstract) / (Full text)
Year of publication2015
Bibliographic typeReports, seminars
Web survey bibliography (4086)
- Sample Representation and Substantive Outcomes Using Web With and Without Incentives Compared to Telephone...; 2016; Lipps, O.; Pekari, N.
- Effects of Data Collection Mode and Response Entry Device on Survey Response Quality; 2016; Ha, L.; Zhang, Che.; Jiang, W.
- The Dynamic Identity Fusion Index: A New Continuous Measure of Identity Fusion for Web-Based Questionnaires...; 2016; Jimenez, J.; Gomez, A.; Buhrmester, M.; Whitehouse, H.; Swann, W. B.
- Recommended Practices for the design of business surveys questionnaires; 2016; Macchia, S.
- Navigation Buttons in Web-Based Surveys: Respondents’ Preferences Revisited in the Laboratory; 2016; Romano Bergstrom, J. C.; Erdman, C.; Lakhe, S.
- Collecting Data from mHealth Users via SMS Surveys: A Case Study in Kenya; 2016; Johnson, D.
- “Money Will Solve the Problem”: Testing the Effectiveness of Conditional Incentives for...; 2016; DeCamp, W.; Manierre, M. J.
- Effects of Incentive Amount and Type of Web Survey Response Rates; 2016; Coopersmith, J.; Vogel, L. K.; Bruursema, T.; Feeney, K.
- Effect of a Post-paid Incentive on Response to a Web-based Survey; 2016; Brown, J. A.; Serrato, C. A.; Hugh, M.; Kanter, M. H.; A.; Spritzer, K. L.; Hays, R. D.
- Web-based versus Paper-based Survey Data: An Estimation of Road Users’ Value of Travel Time Savings...; 2016; Kato, H.; Sakashita, A.; Tsuchiya, Tak.
- Reminder Effect and Data Usability on Web Questionnaire Survey for University Students; 2016; Oishi, T.; Mori, M.; Takata, E.
- Feasibility of using a multilingual web survey in studying the health of ethnic minority youth.; 2016; Kinnunen, J. M.; Malin, M.; Raisamo, S. U.; Lindfors, P. L.; Pere, L. A.; Rimpelae, A. H.
- Respondents of a follow-up web-based survey; 2016; Stoddard, S. A.; Amparo, P.; Popick, H.; Yudd, R.; Sujeer, A.; Baath, M.
- An Examination of Opposing Responses on Duplicated Multi-Mode Survey Responses; 2016; Djangali, A.
- Is One More Reminder Worth It? If So, Pick Up the Phone: Findings from a Web Survey; 2016; Lin-Freeman, L.
- Reducing Underreports of Behaviors in Retrospective Surveys: The Effects of Three Different Strategies...; 2016; Lugtig, P. J.; Glasner, T.; Boeve, A.
- Dropouts in Longitudinal Surveys; 2016; Lugtig, P. J.; De Leeuw, E. D.
- Participant recruitment and data collection through Facebook: the role of personality factors; 2016; Rife, S. C.; Cate, K. L.; Kosinski, M.; Stillwell, D.
- What drives the participation in a monthly research web panel? The experience of ELIPSS, a French random...; 2016; Legleye, S; Cornilleau, A.; Razakamanana, N.
- When Should I Call You? An Analysis of Differences in Demographics and Responses According to Respondents...; 2016; Vicente, P.; Lopes, I.
- Evaluating a New Proposal for Detecting Data Falsification in Surveys; 2016; Simmons, K.; Mercer, A. W.; Schwarzer, S.; Courtney, K.
- Quantifying Under- and Overreporting in Surveys Through a Dual-Questioning-Technique Design. ; 2016; de Jong , M.; Fox, J.-P.; Steenkamp, J. - B. E. M.
- The use and positioning of clarification features in web surveys; 2016; Metzler, A., Kunz, T., Fuchs, M.
- Take the money and run? Redemption of a gift card incentive in a clinician survey. ; 2016; Chen, J. S.; Sprague, B. L.; Klabunde, C. N.; Tosteson, A. N. A.; Bitton, A.; Onega, T.; MacLean, C....
- Online Surveys are Mixed-Device Surveys. Issues Associated with the Use of Different (Mobile) Devices...; 2016; Toepoel, V.; Lugtig, P. J.
- Mail merge can be used to create personalized questionnaires in complex surveys. ; 2016; Taljaard, M.; Chaudhry, S. H.; Brehaut, J. C.; Weijer, C.; Grimshaw, J. M.
- Electronic and paper based data collection methods in library and information science research: A comparative...; 2016; Tella, A.
- Stable Relationships, Stable Participation? The Effects of Partnership Dissolution and Changes in Relationship...; 2016; Mueller, B.; Castiglioni, L.
- Identifying Pertinent Variables for Nonresponse Follow-Up Surveys. Lessons Learned from 4 Cases in Switzerland...; 2016; Vandenplas, C.; Joye, D.; Staehli, M. E.; Pollien, A.
- The 2013 Census Test: Piloting Methods to Reduce 2020 Census Costs; 2016; Walejko, G. K.; Miller, P. V.
- A Technical Guide to Effective and Accessible web Surveys; 2016; Baatard, G.
- The Validity of Surveys: Online and Offline; 2016; Wiersma, W.
- Methods can matter: Where Web surveys produce different results than phone interviews; 2016; Keeter, S.
- Computer-assisted and online data collection in general population surveys; 2016; Skarupova, K.
- Sunday shopping – The case of three surveys; 2016; Bethlehem, J.
- Solving the Nonresponse Problem With Sample Matching?; 2016
- Will They Stay or Will They Go? Personality Predictors of Dropout in Online Study; 2016; Nestler, S.; Thielsch, M.; Vasilev, E.; Back, M.
- Do Polls Still Work If People Don't Answer Their Phones?; 2016; Edwards-Levy, A.; Jackson, N. M.
- HUFFPOLLSTER: Why Reaching Latinos Is A Challenge For Pollsters; 2016; Jackson, N. M.; Edwards-Levy, A.; Velencia, J.
- A Framework of Incorporating Thai Social Networking Data in Online Marketing Survey; 2016; Jiamthapthaksin, R.; Aung, T. H.; Ratanasawadwat, N.
- Creation and Usability Testing of a Web-Based Pre-Scanning Radiology Patient Safety and History Questionnaire...; 2016; Robinson, T. J.; DuVall, S.; Wiggins III, R
- Comprehension and engagement in survey interviews with virtual agents; 2016; Conrad, F. G.; Schober, M. F.; Jans, M.; Orlowski, R. A.; Nielsen, D.; Levenstein, R. M.
- Development of a scale to measure skepticism toward electronic word-of-mouth; 2016; Zhang, Xia.; Ko, M.; Carpenter, D.
- Improving social media measurement in surveys: Avoiding acquiescence bias in Facebook research; 2016; Kuru, O.; Pasek, J.
- Psychological research in the internet age: The quality of web-based data; 2016; Ramsey, S. R.; Thompson, K. L.; McKenzie, M.; Rosenbaum, A.
- Internet Abusive Use Questionnaire: Psychometric properties; 2016; Calvo-Frances, F.
- Revisiting “yes/no” versus “check all that apply”: Results from a mixed modes...; 2016; Nicolaas, G.; Campanelli, P.; Hope, S.; Jaeckle, A.; Lynn, P.
- The impact of academic sponsorship on Web survey dropout and item non-response; 2016; Allen, P. J.; Roberts, L. D.
- Moderators of Candidate Name-Order Effects in Elections: An Experiment; 2016; Kim, Nu.; Krosnick, J. A.; Casasanto, D.
- Predictive inference for non-probability samples: a simulation study ; 2016; Buelens, B.; Burger, J.; van den Brakel, J.