Web Survey Bibliography
Title Influences on Item Response Times in a Multinational Web Survey
Year 2016
Access date 09.06.2016
Abstract
We model time to respond in web surveys of members of biology and physics departments in French, Italian, Turkish, and U.S. universities and
research institutes to understand factors associated with time to respond to survey items in a cross-national, multilingual context. Our findings identify points at which respondent attention diminishes, providing guidance on optimal length of item stems, response options, and survey length for similar populations.The Rice University Religion among Scientists in International Context (RASIC) survey included measures of time to respond. The survey provides a rich source of material. Respondent-level measures include biographical data including age,academic rank, language of choice (the survey was offered in the native language and English in non-U.S. locales), and country of origin. Item-level measures include length of item, reading difficulty, topic, number of responses, and position in survey. Paradata include accumulated time spent on the survey, and time of day. We find inflection points beyond which we see satisficing in the form of diminished respondent attention for the following factors: number of words in item stems, time from start of the survey. Differences in inflection points by language of survey are analyzed by respondent country of birth to understand variations for nonnative speakers. Variations in time of response for sequence of item in instrument (controlling for time), question type, time of day, day of week, and academic rank are also seen. No effect is found for reading grade level, number of response options (controlling for words in response options), gender, inclusion of a “don’tknow” option, scientific discipline, or restarting the survey. A hierarchical cross-classified model is used for analysis. Implications of these findings for questionnaire design are discussed.RASIC data collection was funded by the Templeton World Charity Foundation, grant TWCF0033.AB14, Elaine Howard Ecklund, PI, Kirstin RW Matthews and Steven W. Lewis, co-PIs.
research institutes to understand factors associated with time to respond to survey items in a cross-national, multilingual context. Our findings identify points at which respondent attention diminishes, providing guidance on optimal length of item stems, response options, and survey length for similar populations.The Rice University Religion among Scientists in International Context (RASIC) survey included measures of time to respond. The survey provides a rich source of material. Respondent-level measures include biographical data including age,academic rank, language of choice (the survey was offered in the native language and English in non-U.S. locales), and country of origin. Item-level measures include length of item, reading difficulty, topic, number of responses, and position in survey. Paradata include accumulated time spent on the survey, and time of day. We find inflection points beyond which we see satisficing in the form of diminished respondent attention for the following factors: number of words in item stems, time from start of the survey. Differences in inflection points by language of survey are analyzed by respondent country of birth to understand variations for nonnative speakers. Variations in time of response for sequence of item in instrument (controlling for time), question type, time of day, day of week, and academic rank are also seen. No effect is found for reading grade level, number of response options (controlling for words in response options), gender, inclusion of a “don’tknow” option, scientific discipline, or restarting the survey. A hierarchical cross-classified model is used for analysis. Implications of these findings for questionnaire design are discussed.RASIC data collection was funded by the Templeton World Charity Foundation, grant TWCF0033.AB14, Elaine Howard Ecklund, PI, Kirstin RW Matthews and Steven W. Lewis, co-PIs.
Access/Direct link Conference Homepage (abstract)
Year of publication2016
Bibliographic typeConferences, workshops, tutorials, presentations
Web survey bibliography (4086)
- Displaying Videos in Web Surveys: Implications for Complete Viewing and Survey Responses; 2017; Mendelson, J.; Lee Gibson, J.; Romano Bergstrom, J. C.
- Using experts’ consensus (the Delphi method) to evaluate weighting techniques in web surveys not...; 2017; Toepoel, V.; Emerson, H.
- Mind the Mode: Differences in Paper vs. Web-Based Survey Modes Among Women With Cancer; 2017; Hagan, T. L.; Belcher, S. M.; Donovan, H. S.
- Answering Without Reading: IMCs and Strong Satisficing in Online Surveys; 2017; Anduiza, E.; Galais, C.
- Ideal and maximum length for a web survey; 2017; Revilla, M.; Ochoa, C.
- Social desirability bias in self-reported well-being measures: evidence from an online survey; 2017; Caputo, A.
- Web-Based Survey Methodology; 2017; Wright, K. B.
- Handbook of Research Methods in Health Social Sciences; 2017; Liamputtong, P.
- Lessons from recruitment to an internet based survey for Degenerative Cervical Myelopathy: merits of...; 2017; Davies, B.; Kotter, M. R.
- Web Survey Gamification - Increasing Data Quality in Web Surveys by Using Game Design Elements; 2017; Schacht, S.; Keusch, F.; Bergmann, N.; Morana, S.
- Effects of sampling procedure on data quality in a web survey; 2017; Rimac, I.; Ogresta, J.
- Comparability of web and telephone surveys for the measurement of subjective well-being; 2017; Sarracino, F.; Riillo, C. F. A.; Mikucka, M.
- Achieving Strong Privacy in Online Survey; 2017; Zhou, Yo.; Zhou, Yi.; Chen, S.; Wu, S. S.
- A Meta-Analysis of the Effects of Incentives on Response Rate in Online Survey Studies; 2017; Mohammad Asire, A.
- Telephone versus Online Survey Modes for Election Studies: Comparing Canadian Public Opinion and Vote...; 2017; Breton, C.; Cutler, F.; Lachance, S.; Mierke-Zatwarnicki, A.
- Examining Factors Impacting Online Survey Response Ratesin Educational Research: Perceptions of Graduate...; 2017; Saleh, A.; Bista, K.
- Usability Testing for Survey Research; 2017; Geisen, E.; Romano Bergstrom, J. C.
- Paradata as an aide to questionnaire design: Improving quality and reducing burden; 2017; Timm, E.; Stewart, J.; Sidney, I.
- Fieldwork monitoring and managing with time-related paradata; 2017; Vandenplas, C.
- Interviewer effects on onliner and offliner participation in the German Internet Panel; 2017; Herzing, J. M. E.; Blom, A. G.; Meuleman, B.
- Interviewer Gender and Survey Responses: The Effects of Humanizing Cues Variations; 2017; Jablonski, W.; Krzewinska, A.; Grzeszkiewicz-Radulska, K.
- Millennials and emojis in Spain and Mexico.; 2017; Bosch Jover, O.; Revilla, M.
- Where, When, How and with What Do Panel Interviews Take Place and Is the Quality of Answers Affected...; 2017; Niebruegge, S.
- Comparing the same Questionnaire between five Online Panels: A Study of the Effect of Recruitment Strategy...; 2017; Schnell, R.; Panreck, L.
- Nonresponses as context-sensitive response behaviour of participants in online-surveys and their relevance...; 2017; Wetzlehuetter, D.
- Do distractions during web survey completion affect data quality? Findings from a laboratory experiment...; 2017; Wenz, A.
- Predicting Breakoffs in Web Surveys; 2017; Mittereder, F.; West, B. T.
- Measuring Subjective Health and Life Satisfaction with U.S. Hispanics; 2017; Lee, S.; Davis, R.
- Humanizing Cues in Internet Surveys: Investigating Respondent Cognitive Processes; 2017; Jablonski, W.; Grzeszkiewicz-Radulska, K.; Krzewinska, A.
- A Comparison of Emerging Pretesting Methods for Evaluating “Modern” Surveys; 2017; Geisen, E., Murphy, J.
- The Effect of Respondent Commitment on Response Quality in Two Online Surveys; 2017; Cibelli Hibben, K.
- Pushing to web in the ISSP; 2017; Jonsdottir, G. A.; Dofradottir, A. G.; Einarsson, H. B.
- The 2016 Canadian Census: An Innovative Wave Collection Methodology to Maximize Self-Response and Internet...; 2017; Mathieu, P.
- Push2web or less is more? Experimental evidence from a mixed-mode population survey at the community...; 2017; Neumann, R.; Haeder, M.; Brust, O.; Dittrich, E.; von Hermanni, H.
- In search of best practices; 2017; Kappelhof, J. W. S.; Steijn, S.
- Redirected Inbound Call Sampling (RICS); A New Methodology ; 2017; Krotki, K.; Bobashev, G.; Levine, B.; Richards, S.
- An Empirical Process for Using Non-probability Survey for Inference; 2017; Tortora, R.; Iachan, R.
- The perils of non-probability sampling; 2017; Bethlehem, J.
- A Comparison of Two Nonprobability Samples with Probability Samples; 2017; Zack, E. S.; Kennedy, J. M.
- Rates, Delays, and Completeness of General Practitioners’ Responses to a Postal Versus Web-Based...; 2017; Sebo, P.; Maisonneuve, H.; Cerutti, B.; Pascal Fournier, J.; Haller, D. M.
- Necessary but Insufficient: Why Measurement Invariance Tests Need Online Probing as a Complementary...; 2017; Meitinger, K.
- Nonresponse in Organizational Surveying: Attitudinal Distribution Form and Conditional Response Probabilities...; 2017; Kulas, J. T.; Robinson, D. H.; Kellar, D. Z.; Smith, J. A.
- Theory and Practice in Nonprobability Surveys: Parallels between Causal Inference and Survey Inference...; 2017; Mercer, A. W.; Kreuter, F.; Keeter, S.; Stuart, E. A.
- Is There a Future for Surveys; 2017; Miller, P. V.
- Reducing speeding in web surveys by providing immediate feedback; 2017; Conrad, F.; Tourangeau, R.; Couper, M. P.; Zhang, C.
- Social Desirability and Undesirability Effects on Survey Response latencies; 2017; Andersen, H.; Mayerl, J.
- A Working Example of How to Use Artificial Intelligence To Automate and Transform Surveys Into Customer...; 2017; Neve, S.
- A Case Study on Evaluating the Relevance of Some Rules for Writing Requirements through an Online Survey...; 2017; Warnier, M.; Condamines, A.
- Estimating the Impact of Measurement Differences Introduced by Efforts to Reach a Balanced Response...; 2017; Kappelhof, J. W. S.; De Leeuw, E. D.
- Targeted letters: Effects on sample composition and item non-response; 2017; Bianchi, A.; Biffignandi, S.