Web Survey Bibliography
Title Assessing the Accuracy of 51 Nonprobability Online Panels and River Samples: A Study of the Advertising Research Foundation 2013 Online Panel Comparison Experiment
Author Yang,Y.;Callegaro,M.;Yang,Y.;Callegaro,M.;Chin,K.;Yang,Y.;Villar,A.;Callegaro, M.; Chin, K.; Krosnick, J. A.; Villar, A.; Yang, Y.
Year 2016
Access date 09.06.2016
Abstract
Survey research is increasingly conducted using online panels and river samples. With a large number of data suppliers available, data purchasers need to understand the accuracy of the data being provided and whether probability sampling continues to yield more accurate measurements of populations. This paper evaluates the accuracy of a probability sample and non-probability survey samples that were created using various different quota sampling strategies and sample sources (panel versus river
samples) on the accuracy of estimates. Data collection was organized by the Advertising Research Foundation (ARF) in 2013. We compare estimates from 45 U.S. online panels of non-probability samples, 6 river samples, and one RDD telephone sample to high-quality benchmarks -- population estimates obtained from large-scale face-to-face surveys of probability samples with extremely high response rates (e.g., ACS, NHIS, and NHANES). The non-probability samples were supplied by 17 major U.S. providers. Online respondents were directed to a third party website where the same questionnaire was administered. The online samples were created using three quota methods: (A) age and gender within regions; (B) Method A plus race/ethnicity; and (C) Method B plus education. Mean questionnaire completion time was 26 minutes, and the average sample size was 1,118. Comparisons are made using unweighted and weighted data, with different weighting strategies of increasing complexity. Accuracy is evaluated using the absolute average error method, where the percentage of respondents who chose the modal category in the benchmark survey is compared to the corresponding percentage in each sample. The study illustrates the need for methodol
ogical rigor when evaluating the performance of survey samples.
samples) on the accuracy of estimates. Data collection was organized by the Advertising Research Foundation (ARF) in 2013. We compare estimates from 45 U.S. online panels of non-probability samples, 6 river samples, and one RDD telephone sample to high-quality benchmarks -- population estimates obtained from large-scale face-to-face surveys of probability samples with extremely high response rates (e.g., ACS, NHIS, and NHANES). The non-probability samples were supplied by 17 major U.S. providers. Online respondents were directed to a third party website where the same questionnaire was administered. The online samples were created using three quota methods: (A) age and gender within regions; (B) Method A plus race/ethnicity; and (C) Method B plus education. Mean questionnaire completion time was 26 minutes, and the average sample size was 1,118. Comparisons are made using unweighted and weighted data, with different weighting strategies of increasing complexity. Accuracy is evaluated using the absolute average error method, where the percentage of respondents who chose the modal category in the benchmark survey is compared to the corresponding percentage in each sample. The study illustrates the need for methodol
ogical rigor when evaluating the performance of survey samples.
Access/Direct link Conference Homepage (abstract)
Year of publication2016
Bibliographic typeConferences, workshops, tutorials, presentations
Web survey bibliography (431)
- Interviewer effects on onliner and offliner participation in the German Internet Panel; 2017; Herzing, J. M. E.; Blom, A. G.; Meuleman, B.
- Millennials and emojis in Spain and Mexico.; 2017; Bosch Jover, O.; Revilla, M.
- Comparing the same Questionnaire between five Online Panels: A Study of the Effect of Recruitment Strategy...; 2017; Schnell, R.; Panreck, L.
- Do distractions during web survey completion affect data quality? Findings from a laboratory experiment...; 2017; Wenz, A.
- A Comparison of Two Nonprobability Samples with Probability Samples; 2017; Zack, E. S.; Kennedy, J. M.
- Targeted letters: Effects on sample composition and item non-response; 2017; Bianchi, A.; Biffignandi, S.
- Oversampling as a methodological strategy for the study of self-reported health among lesbian, gay and...; 2017; Anderssen, N.; Malterud, K.
- Analyzing Survey Characteristics, Participation, and Evaluation Across 186 Surveys in an Online Opt-...; 2017; Revilla, M.
- Comparison of response patterns in different survey designs: a longitudinal panel with mixed-mode and...; 2017; Ruebsamen, N.; Akmatov, M. K.; Castell, S.; Karch, A.; Mikolajczyk, R. T.
- Determinants of polling accuracy: the effect of opt-in Internet surveys; 2017; Sohlberg, J.; Gilljam, M.; Martinsson, J.
- Article Establishing an Open Probability-Based Mixed-Mode Panel of the General Population in Germany...; 2017; Bosnjak, M.; Dannwolf, T.; Enderle, T.; Schaurer, I.; Struminskaya, B.; Tanner, A.; Weyandt, K.
- Effects of Mobile versus PC Web on Survey Response Quality: a Crossover Experiment in a Probability...; 2017; Antoun, C.; Couper, M. P.; G. G.Conrad, F. G.
- Impact of satisficing behavior in online surveys on consumer preference and welfare estimates; 2016; Gao, Z.; House, L. A.; Bi, X.
- Comparing Twitter and Online Panels for Survey Recruitment of E-Cigarette Users and Smokers; 2016; Guillory, J.; Kim, A.; Murphy, J.; Bradfield, B.; Nonnemaker, J.; Hsieh, Y. P.
- Targeted Appeals for Participation in Letters to Panel Survey Members; 2016; Lynn, P.
- Motivated Misreporting in Web Panels; 2016; Bach, R.; Eckman, S.
- Using official surveys to reduce bias of estimates from nonrandom samples collected by web surveys; 2016; Beresovsky, V.; Dorfman, A.; Rumcheva, P.
- A Feasibility Study of Recruiting and Maintaining a Web Panel of People with Disabilities; 2016; Chandler, J.
- Inferences from Internet Panel Studies and Comparisons with Probability Samples; 2016; Lachan, R.; Boyle, J.; Harding, R.
- Exploring the Gig Economy Using a Web-Based Survey: Measuring the Online 'and' Offline Side...; 2016; Robles, B. J.; McGee, M.
- Comparing data quality between online panel and intercept samples; 2016; Liu, M.
- Integration of a phone-based household travel survey and a web-based student travel survey; 2016; Verreault, H.; Morency, C.
- Are Final Comments in Web Survey Panels Associated with Next-Wave Attrition?; 2016; McLauchlan, C.; Schonlau, M.
- Estimation and Adjustment of Self-Selection Bias in Volunteer Panel Web Surveys ; 2016; Niu, Ch.
- Participation in an Intensive Longitudinal Study with Weekly Web Surveys Over 2.5 Years; 2016; Barber, J. S.; Kusunoki, Y.; Gatny, H. H.; Schulz, P.
- The impact of survey duration on completion rates among Millennial respondents ; 2016; Coates, D.; Bliss, M.; Vivar, X.
- Cognitive Probing Methods in Usability Testing – Pros and Cons; 2016; Nichols, E. M.
- Assessing the Accuracy of 51 Nonprobability Online Panels and River Samples: A Study of the Advertising...; 2016; Yang,Y.;Callegaro,M.;Yang,Y.;Callegaro,M.;Chin,K.;Yang,Y.;Villar,A.;Callegaro, M.; Chin, K.; Krosnick...
- Calculating Standard Errors for Nonprobability Samples when Matching to Probability Samples ; 2016; Lee, Ad.; ZuWallack, R. S.
- User Experience and Eye-tracking: Results to Optimize Completion of a Web Survey and Website Design ; 2016; Walton, L.; Ricci, K.; Libman Barry, A.; Eiginger, C.; Christian, L. M.
- Using Web Panels to Quantify the Qualitative: The National Center for Health Statistics Research and...; 2016; Scanlon, P. J.
- Does Changing Monetary Incentive Schemes in Panel Studies Affect Cooperation? A Quasi-experiment on...; 2016; Schaurer, I.; Bosnjak, M.
- Web Probing for Question Evaluation: The Effects of Probe Placement ; 2016; Fowler, S.; Willis, G. B.; Moser, R. P.; Townsend, R. L. M.; Maitland, A.; Sun, H.; Berrigan, D.
- Using Cash Incentives to Help Recruitment in a Probability Based Web Panel: The Effects on Sign Up Rates...; 2016; Krieger, U.
- Making Connections on the Internet: Online Survey Panel Communications ; 2016; Libman Barry, A.; Eiginger, C.; Walton, L.; Ricci, K.
- Evaluating a Modular Design Approach to Collecting Survey Data Using Text Messages ; 2016; West, B. T.; Ghimire, D.; Axinn, W.
- Safety First: Ensuring the Anonymity and Privacy of Iranian Panellists’ While Creating Iran...; 2016; Farmanesh, A.; Mohseni, E.
- Tracking the Representativeness of an Online Panel Over Time ; 2016; Klausch, L. T.; Scherpenzeel, A.
- Non-Observation Bias in an Address-Register-Based CATI/CAPI Mixed Mode Survey; 2016; Lipps, O.
- Bees to Honey or Flies to Manure? How the Usual Subject Recruitment Exacerbates the Shortcomings of...; 2016; Snell, S. A., Hillygus, D. S.
- Thinking Inside the Box Visual Design of the Response Box Affects Creative Divergent Thinking in an...; 2016; Mohr, A. H.; Sell, A.; Lindsay, T.
- Establishing the accuracy of online panels for survey research; 2016; Bruggen, E.; van den Brakel, J.; Krosnick, J. A.
- Adaptive survey designs to minimize survey mode effects – a case study on the Dutch Labor Force...; 2016; Calinescu, M.; Schouten, B.
- What is the gain in a probability-based online panel to provide Internet access to sampling units that...; 2016; Revilla, M.; Cornilleau, A.; Cousteaux, A-S.; Legleye, S; de Pedraza, P.
- Representative web-survey!; 2016; Linde, P.
- The Utility of an Online Convenience Panel for Reaching Rare and Dispersed Populations; 2016; Sell, R.; Goldberg, S.; Conron, K.
- Evaluating Online Labor Markets for Experimental Research: Amazon.com's Mechanical Turk; 2016; Berinsky, A.; Huber, G. A.; Lenz, G. S.
- Setting Up an Online Panel Representative of the General Population The German Internet Panel; 2016; Blom, A. G.; Gathmann, C.; Krieger, U.
- Reducing Underreports of Behaviors in Retrospective Surveys: The Effects of Three Different Strategies...; 2016; Lugtig, P. J.; Glasner, T.; Boeve, A.
- Dropouts in Longitudinal Surveys; 2016; Lugtig, P. J.; De Leeuw, E. D.